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ABSTRACT 

Denote by G(n; m) a graph of n vertices and m edges. We prove that every 
G(n; [n2/4] + 1) contains a circuit of l edges for every 3 =< I < c2n, also 
that every G(n; [n2/4] + 1) contains a ke(un, Un) with un = [Cllogn] (for 
the definition of ke(un, Un) see the introduction). Finally for t > to every 
G(n; [tn3/2])contains acircuit of 21 edges for 2 <= I < c3t2. 

G(n; m) will denote a graph of n vertices and m edges, K(p) will denote the 

complete graph of p vertices, and K(p, p) will denote the complete bipartite graph 

of  2p vertices. More generally K(pt , . . . ,  Pr) denotes the r-chromatic graph where 
there are p, vertices of  the i-th color and any two vertices of  different color are 

adjacent. Ke(pl,.",pr), Pl < P2 <= "'" <= P,, will denote a K ( P l , ' " ,  Pr) where 
two vertices of  the first color are adjacent, i.e. Ke(pl,  "" ,p,)  is a K(pl ,  ..., p,) 
with an extra edge. The vertices of  G will be denoted by x, xl ,  y , ' " ;  

the edge connecting x and y will be denoted by (x,y).  ( G -  xl . . . . .  xr) 
denotes the graph G f rom which the vertices xt , --- ,  x, and all edges which are 
incident to them have been deleted, v(x), the valency of x, is the number  of  edges 
adjacent to x. C1 will denote a circuit having l edges, c I, c2, "" denote suitable 

positive absolute constants. I t ]  is the greatest integer not exceeding t. 
A special case of  a well known theorem of  Tur~in [1] states that  every 

G(n; [ n 2 / 4 ]  + 1) contains a K(3) (i.e. a triangle). Dirac and I observed 
(independently) that every G(n; [n2/4]  + 1) contains for every 4 < k _< n a sub- 
graph G(k; [k2/4]  + 1)and in fact Dirac proved a more general theorem [2]. 

In the present paper we continue the investigation of  the structure of  the graphs 

G(n; [n2/4] + 1) and we are going to prove the following theorems: 

THEOREM l. Put [cl log n] = u n. Every G(n; [n2/4]  + 1)contains a Ke(un,u~). 

REMARK. The structure of  K~(un,u~) is clearly uniquely determined. I t  is the 
2 G(2u,; u,, + 1) which contains a K(u,,u~) as a subgraph. 

THEOREM 2. Every G(n; [n2/4] +1)  contains a Cl for  every 3 < l < c2n. 

THEOREM 3. Let i> to ,  then every G(n; [~na/2]) contains a C2t for  every 

2 < l < c3 t2. 
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Apart from the value of  cl Theorem 1 is best possible. In fact we can show 

the following 

THEOREM 4. To every ~ > 0 there is a c(e) so that ,for every n there is a 
G(n; [ ( ~ ) ( 1 -  e)])which does not contain a K([c(e)logn], [e(e)logn]). 

We suppress the proof  of  Theorem 4 since it uses the methods used in [31. 
A theorem of  A. H. Stone and myself [41 implies that every G(n; [en2]) contains 
a K([cl(e)logn ], [c~(e)logn]). The exact determination of c(e) and cl(~, ) seems 
difficult. 

I would expect that the exact determination of e2 in Theorem 2 will be difficult. 
Theorem 3 is best possible in the sense that E. Klein [5] showed that there is a 

G(n; [c4nZ]) which contains no C4. For t >  to perhaps every G(n; [tn3/2]) 
contains a C2, for every 2 < l<  Cstnl/2; if true, then apart from the value of c 5 
this is easily seen to be best possible. 

By the same method as used in the proof  of Theorem 1 we can prove 

THEOREM 5. 7'0 every k there is an no = no(k) and a Ck SO that, .for n > no, 
G(n; [n2/ 4] + k) always contains a K([cklogn], [cklogn]) and k further edges. 

We suppress the proof  of Theorem 5. Put r k = [c klog HI. For k > 1 the structure 
of our G(2rk; r2k + k) is of course not uniquely determined. Perhaps the following 
result holds: Let n > 8. Then every G(n; [n2/4]  + n - 1) contains a K([clogn], 
[c log HI) and two edges which have no vertex in common and all four vertices c f  
which have the same color. It is easy to see that a G(n; [n2/41 + n - 2) does not 
have to have this property. To see this consider a K([n/2],  [(n + 1)/2])  
where further one vertex of each color is adjacent to all the vertices of our graph 
i .e. ,  the vertices of our G ( n ; [ n 2 / 4 ] + n - 2 )  are x , . . . , x ~ ; y l , . . . , y  ~ 
k = In /2 ] ,  l =  [(n + 1)/2]  and its edges are 

(xl, yj); 1 _< i --- k, l___<j____ I and (xl,xi),(yl,yj); 2 <_ i <_ k, 2 <=j<= I. 

Put 
P D 2  " 2 r 

m(n,p) - -  2~-~----1)(n - - r  2 ) + ( 2 ) , n = ( p - 1 ) t + r , l _ < _ r = < p - 1 .  

Turfin proved that every G(n; m(n,p)) contains a K(p) and Dirac and I [2] observed 
(independently) that it contains a K(p + 1) from which one edge is missing. By 

very much more complicated methods I can prove that for n > no(p, k) G(n: m(n, p)) 
contains a p chromatic subgraph K(k, ... ,k) and one further edge (i. e., a 
K~(k,..., k)); for p = 2 this is a weakened form of  Theorem 1. 

Now we prove Theorem 1. First we need two Lemmas. 

LEMMA 1. Every G(n; m) contains a subgraph G(N,M) every vertex of 
which has valency greater than [m/HI. Further 

(1) M > = m - ( n - N )  [ ~ ]  
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(The Lemma of  course means that every vertex of  G(N, M) has valency in 

G(N,M) greater than [re~n]). 
I f  every vertex of G(n, m) has valency > In~ m], there is nothing to prove. 

Hence we can assume that  G(n, m) has a vertex x 1 of  valency < [re~n]. I f  
G(n; m) - xl has a vertex x2 with v(x2) < [re~n] we consider G(n; m) - xl  - x 2 .  
We repeat this process and obtain a sequence of  vertices x x,..-,xk so that  the 
valency of xi in (G(n; m) - x 1 . . . . .  xi-1)  is _< [re~n] for every 1 < i < k - 1, 

but every vertex of 

(2) (G(n; m) - x I . . . . . .  x~.) = G(N; M) 

has valency > [re~n]. 
Clearly M > 0 for otherwise, since (G(n; m) - xl  . . . . .  x,_~) has only one 

vertex and thus no edges, we can put in (2) k < n - 1 and by our construction 

we would have 

an evident contradiction. Further by our construction (k = n - N) 

," 

which proves (1), and the proof  of  Lemma 1 is complete. 

LEM~ 2. Let m> [n2/4] .  Then every G(n; m) contains a K,(2,k) where 
k = Icon] .  

Lemma 2 is known [6]. 
Now we can prove Theorem 1. In fact we shall prove the stronger statement: 
To every e > 0 there is a ci = q(~) so that every G(n; [n2/4]  + 1) contains a 

Ke([ctlogn], [n 1-*]). 
By Lemma 1 our G(n; In2~ 4.] + 1) contains a subgraph G(N, M) every vertex of 

which has valency > [ [n2 /4]  + 1] = [n /4 ] .  Further (1) implies by a simple 
n 

computat ion 

(2) M=> ~-  + 1 - ( n - N )  > --~-- . 

Further since every vertex of  G(N,M) has valency > [n/4] we have 

n 
(3) N > - - .  

4 

By (2) Lemma 2 can be applied to G(N, M) and by Lemma 2 and (3) we obtain 

that  G(N, M) contains a Ke(2, k) with k = [c5n/4 ]. Let the vertices of  our Ke(2, k) 

be (.we choose e5 < 1/3) 
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["] (4) xl ,xz;  Y~, "",Yk, k = < -g - 1 

Denote by zl, " ' ,  z, the other vertices of G(N, M). Each y has by Lemma 1 valency 
> In/4]  (in G(N,M)), hence each y~, 1 < i < k is connected with more than 

n n 
(5) - - - 2 - k + l  >--_ 

4 8 

z's. ((5) follows immediately from (4) since the number of x's and y's is k + 2 < 
[n /8 ]  + 1 and in the worst case yf is connected with all of them). 

Let z~ °, 1 < j < fi, t~ > n/8,  be the z's adjacent to Yv Form all the (u.-2)-tuples 
(u. = [c 1 logn] of Theorem 1) of these vertices for each i,1 < i  < k = [c5n/4 ]. 

By a simple computation we obtain (we use (b) > (a/ b) b) 

(6) ~, ti > csn 
i = 1  u . -  2 = 4 

Further trivially 

(iinjS +l) csn( n)-2 
u, - 2 > ---4- 8 (u , -2 )  

(7) u.  - 2 < ( u . -  2) ! < ( u . -  2 ) . . -  2 < u . - - s T !  

Hence from (6) and (7) 

) ( ) ( ) (8) ~ ti csn n 1 nl_,  n 
i=a u . - 2  > --4- u . - 2  24~. ---~- > u . - 2  

for every 8 > 0  if cl = c~(e) is sufficiently small. The number of the z's is clearly 
less than n, hence the number of the (u, - 2)-tuples formed from z's is less than 

(u, n_ 2)" Thus from (8) there  is a (u, - 2)-tuple which occurs more than 

n 1 -~ t imes-- in  other words there is a set of u,. - 2 z's which are adjacent to the 
same [n I -*] y's. If  we adjoin to these z's xl and x2 (which are adjacent and are 
adjacent to all y's) we obtain that G(N; M) and hence our G(n; [n2/4] + 1) 
contains a Ke(u.,n 1-~) for every e > 0 if cl = c1(~) is sufficiently small. This 
completes the proof of our assertion and hence Theorem 1 is proved. 

Proof of Theorem 2. As in the proof of Theorem 1 our G(n; [n2/4] + 1) 
contains a Ke(2,[csn/4]), cs <!1/3 ,  having the vertices Xl,X2, YI,. . . ,yk, 
k = [c5n/4]. Each of the k vertices y~,.. . ,yk are adjacent to more than n/8  
z's (we use the notations of Theorem 1). Consider now the bipartite graph whose 
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vertices are Yx,'",Yk; z l, . . . ,z ,  and whose edges are the edges (Yt, z j ) o f  G(n;m). 
This bipartite graph has fewer than n vertices and more than 

--~ ~-- c6 n2 

edges. Hence by a theorem of  Gallai and myself I-7] it has a path  of  length c2n 
(the length of a path  is the number  of  its edges). Since our graph is bipartite every 

second of  its vertices is a y. Now since x l and x2 are adjacent and they are adjacent 
to each of  the y ' s  we immediately obtain that our G(n; 1-n2/4] + 1) contains a 

C t for each 3 < k < [c2n ], which proves Theorem 2. 
Proof  of  Theorem 3. By Lemma 1 G(n; [tn3/2]) contains a subgraph G(N; M) 

every vertex of  which has valency => [tn~/Z]. Let x be one such vertex and let 
Yl, "",Yk, k = ½ [  thaI2] be some of the vertices adjacent to x and denote by 

z l , . . ,  the other vertices of G(N,M). Every y has valency > 1-tnl/2],thus 
since the number  of  y ' s  is ½1-tn ~/2] there are at least ½ 1-tn 1/2] z's adjacent 

to each y. Hence the bipartite graph whose vertices are y~,.. . ,  Yk : Z~,... and whose 

edges are the edges (y~, z j) of  G(n, m) has at least 

t 2 
k ½[tn l/z] = k[tnl/2] 2 > ~-n 

edges. The number of  its vertices is clearly < n. Thus by the theorem of Gallai 
and myself [7] it has a path  of  length > 2c3 t 2 and as in the proof  of  Theorem 2 
every second vertex of this graph is a y. Since x is adjacent to every y this path  
together with the vertex x gives the required circuits C2t, 2 < l < c3t 2, which 

proves Theorem 3. 
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